DNA mismatch repair.

نویسندگان

  • Thomas A Kunkel
  • Dorothy A Erie
چکیده

DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects mismatches generated during DNA replication and escape proofreading. MMR proteins also participate in many other DNA transactions, such that inactivation of MMR can have wide-ranging biological consequences, which can be either beneficial or detrimental. We begin this review by briefly considering the multiple functions of MMR proteins and the consequences of impaired function. We then focus on the biochemical mechanism of MMR replication errors. Emphasis is on structure-function studies of MMR proteins, on how mismatches are recognized, on the process by which the newly replicated strand is identified, and on excision of the replication error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dna Repair

1. DNA Damage 1.1. Spontaneous Alterations of DNA (by Mutator Genes) 1.2. Environmental Damage to DNA 2. DNA Repair by Reversal of Damage Without Excision 2.1. Photoreactivation 2.2. Repair of O-Alkylguanine and Alkylthymine Without DNA trand Excision 3. Base Excision Repair in Non-Mammalian Cells 3.1. DNA Glycosylase in Non-Mammalian Cells 4. Base Excision Repair in Mammalian Cells 4.1. DNA Gl...

متن کامل

Mismatch repair processing of carcinogen-DNA adducts triggers apoptosis.

The DNA mismatch repair pathway is well known for its role in correcting biosynthetic errors of DNA replication. We report here a novel role for mismatch repair in signaling programmed cell death in response to DNA damage induced by chemical carcinogens. Cells proficient in mismatch repair were highly sensitive to the cytotoxic effects of chemical carcinogens, while cells defective in either hu...

متن کامل

DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxi...

متن کامل

The Escherichia coli MutS DNA mismatch binding protein specifically binds O(6)-methylguanine DNA lesions.

DNA mismatch repair defects in certain cell types confer resistance to the cytotoxic effects of alkylating agents, suggesting that a normally functioning DNA mismatch repair pathway can actually mediate alkylation-induced cell death. In eukaryotic cells this phenomenon is only observed in cells lacking adequate DNA methyltransferase for the repair of O6-methylguanine (O6MeG) DNA lesions. It has...

متن کامل

The Escherichia coli MutS DNA mismatch binding protein specifically binds 0-methylguanine DNA lesions

DNA mismatch repair defects in certain cell types confer resistance to the cytotoxic effects of alkylating agents, suggesting that a normally functioning DNA mismatch repair pathway can actually mediate alkylation-induced cell death. In eukaryotic cells this phenomenon is only observed in cells lacking adequate DNA methyltransferase for the repair of 0*-methylguanine (O*MeG) DNA lesions. It has...

متن کامل

Biochemistry and genetics of eukaryotic mismatch repair.

The process of mismatch repair was first postulated to explain the results of experiments on genetic recombination and bacterial mutagenesis. Mismatch repair has long been known to play a major role in two cellular processes: (1) the repair of errors made during DNA replication or as the result of some types of chemical damage to DNA and DNA precursors; and (2) the processing of recombination i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of biochemistry

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2005